

Suitablility and Safety Aspects of Cereals and Pseudocereals for Gluten-Free Foods

Prof. Dr. Peter Koehler

German Research Centre for Food Chemistry, Freising, Germany

Different Meanings of Gluten

Gluten (Latin = glue)

- 1. Starch industry
 - Gluten: water-insoluble by-product of starch preparation
 - From wheat: vital gluten → food, non-food, feed applications
 - From maize: corn gluten → feed

2. Cereal chemistry

Gluten: proteins (techno-functional) from wheat gluten

3. Coeliac disease

- Gluten: Coeliac-active proteins/peptides from wheat, rye, barley and their crossbreeds and possibly oats
- Defined in the Codex Alimentarius-Standard for gluten-free foods

Prolamins: alcohol-soluble part of gluten

Glutelins: alcohol-insoluble part of gluten

Cereals and Pseudocereals

- Cereals: Plants belonging to the familiy of the Poaceaea (grasses) that are used for human nutrition
 - Wheat, rye, barley
 - Oats
 - Maize, rice sorghum
- Pseudocereals: Plants not belonging to the *Poaceae* but are used and processed like cereals:
 - Buckwheat, amaranth, quinoa
- Coeliac-safe raw materials
 - Are gluten-free 'by nature' (maize, rice sorghum, buckwheat, amaranth, quinoa)
 - Derive from gluten-containing cereals and have been been rendered gluten-free (e.g. wheat starch)
 - Must not be contaminated with gluten by any of the glutencontaining grains

Gluten Proteins

Source: Kampffmeyer Food Innovation

Endosperm

- Are storage proteins, which are only present in the starchy endosperm of the kernel
- Several hundred components
- 5 10 % of kernel dry mass
- Approximately 80 % of total kernel protein
- Only function: supplying the germ with nitrogen and amino acids during germination
- Poor nutritional value (low content of essential amino acids)
- Gluten proteins of wheat are responsible for the unique baking performance of wheat flour

Classification of Gluten Proteins

 Recently, amino acid sequences of all storage protein types of wheat, rye and barley have been determined

Protein type	Wheat	Rye	Barley
Prolamins	ω-gliadins	ω-secalins	C-hordeins
(monomeric)	lpha-gliadins -		-
	γ-gliadins	γ-40k-secalins	γ -hordeins
Glutelins	HMW-glutenins	HMW-secalins	D-hordeins
(polymeric)	LMW-glutenins	γ -75k-secalins	B-hordeins

Oats: Up to date no commonly accepted classification!

Safety Aspects

- Codex Alimentarius and Regulation (EG) No. 41/2009
 - Thresholds: 20 mg gluten/kg and 100 mg gluten/kg
- Suitable methods are required to quantify the gluten content of (gluten-free) foods
- Requirements for the analysis of the gluten content of foods
 - Methods that are sensitive enough to quantify gluten concentrations well below 20 mg/kg and suitable for routine analysis
 - An independent reference method to verify the routine method
 - A reference material for method calibration with distinct protein(type)
 or peptide content to convert the measured signal into prolamin/gluten
 concentration

State-of-the-Art of Gluten Analysis

- A reference material for method calibration is available, but is not certified
- Methods with sufficient sensitivity are available (ELISA)
- Reference methods are available, but they are not (yet) suitable for food analysis
- Currently no accepted method to determine the gluten content directly by measuring all responsible proteins
- Gluten is currently determined by quantifying prolamins and multiplying the prolamin content by factor 2 to obtain the gluten content

Prolamin/Glutelin Ratios

PROL/GLUT ratios < 1 only occur in starch samples

Gluten Analysis – Methods

- Real-time PCR
 - (Sandberg et al., 2003; Zeltner et al., 2009; Mujico et al., 2011)
 - © Specific detection of wheat, rye, barley and oats
 - Q-PCR of wheat with a limit of detection (LOD) around 1.5 mg gliadin/kg
 - © Screening method for the presence of gluten-containing cereals
 - 8 Not suitable for heated or partially hydrolyzed samples
 - ⊗ Detects DNA and not protein (→ no gluten quantitation possible!)

Gluten Analysis – Methods

- MALDI-TOF mass spectrometry of intact proteins (Camafeita et al., 1998; Hernando et al., 2003)
 - Oetection of the characteristic mass profiles of prolamins
 - 8 Not sensitive enough with a LOD around 100 mg gliadin/kg
- LC-MS/MS of enzymatic digests of gluten proteins (Weber et al., 2009; Sealey-Voyksner et al., 2010)
 - Highly sensitive detection of peptides with LODs below 0.03 mg/kg
 - Open Potential for being a references method for gluten quantiation
 - Difficult calculation of the gluten content from the amount of peptide
 - Currently no comprehensive method for wheat, rye, barley, and oats
 - Expensive and sophisticated equipment necessary
 - Stable isotope labeled internal standards required

Gluten Analysis – Methods

- Immunochemical Methods (enzyme-linked immunosorbent assays, ELISA) (Valdes et al., 2003; Morón et al., 2008; Mujico et al, 2012)
 - Sufficient sensitivity with LODs of 1.5 mg gliadin/kg
 - Fast and suitable for routine analysis
 - O No special equipment needed
 - © Ridascreen® Gliadin ELISA based on the R5-antibody has been approved as "Official First Action" method by AOAC International and is currently endorsed as a 'Type 1 Method' by Codex Alimentarius
 - Strongly dependent on the reference protein for calibration
 - Only determination of specific prolamin types
 - Calculation of the gluten content from the prolamin content
 - Oifferent sensitivity of kits for different cereal species
 - Different sensitivity depending on the antibody used

Wheat: Recovery With Different ELISA Kits

Prolamin target content: 30 mg/kg (= 100 %)

Barley: Recovery With Different ELISA Kits

Prolamin target content: 30 mg/kg (= 100 %)

Gluten Analysis – State-of-the-Art

- RP-HPLC-UV (Wieser et al., 1998; Wieser and Koehler, 2009)
 - © Real gluten (prolamin + glutelin) content can be determined
 - Absolute quantitation with any protein reference possible
 - © Routine application possible
 - Provides basic data on gluten composition
 - 8 Not sensitive enough with a limit of quantitation around 250 mg/kg
 - ⊖ Possible interferences of other proteins present in food samples
 → limited to raw materials due to low selectivity

Perspectives – Future Developments

- New protein reference(s) suitable for each method needed
- ELISA
 - New antibodies
 - Detection of **all** protein types ($\Sigma_{\text{(types)}} = \text{gluten}$)
 - Specificity for different cereal species?
 - Improvement of gluten quantitation in fermented foods
- Non-immunochemical methods
 - LC-MS analysis of storage proteins (Σ = gluten) or peptides?
 - How to report peptide concentrations?
 - Selection of suitable sequences (toxic/non-toxic but conserved epitopes)
 - Absolute quantitation without stable isotope labeling?
 - Gel permeation chromatography with fluorescence detection (GP-HPLC-FLD) of gluten proteins (autofluorescence or labeling)

Wheat Starch: Comparison GP-HPLC-FLD and ELISA

Quantitative data [mg/kg]; Gluten_{ELISA} = 2 × Gliadin_{ELISA}

Sample	Gluten (GP-HPLC-FLD)	Gluten (ELISA competitive)	Gluten (ELISA Sandwich)	Gliadin/ Glutenin
Gf W1 _(f)	7	16	8	n.c.*
Gf W3 _(f)	43	32	14	0.48
Gf W5 _(f)	26	10	6	n.c.*
W1 _(t)	26	46	16	1.02
W3 _(f)	52	22	20	0.30
W4 _(f)	250	104	46	0.38
W5 _(f)	31	20	16	0.91
W7 _(f)	43	170	66	2.38
W8 _(f)	10189	11590	11904	3.19
W9 _(t)	< 5	n.c.*	n.c.*	n.c.*
W11 _(t)	800	298	414	1.08

^{*} not calculable; (f) = food grade; (t) = technical; Gf W = wheat starch labelled as gluten-free; W = wheat starch with no specification of gluten content

Conclusions

- Gluten analysis is an analytical challenge because
 - gluten has an extremely complex composition and
 - gluten from different cereals species shows homologies but also distinct differences
- ELISA methods are state-of-the art in gluten analysis
- Unprecise gluten quantitation due to calculation on the basis of a fixed prolamin/glutelin ratio of 1
- New antibodies for both prolamins and glutelins would enable analytical determination of the gluten content instead of calculation
- Need for independent analytical methods to confirm ELISA results: LC-MS, HPLC-Fluorescence Detection
- The determination of the "true" gluten content of many (gluten-free) foods appears to be not possible to date and remains a challenge!

Thanks to ...

- Sylvia Berger
- Katharina Konitzer
- Theresa Walter
- Herbert Wieser

You for your attention!